На главную

Напишите нам

Карта сайта

Поиск по сайту


    Задайте вопрос
    Адреса клиник
   
Клиника в Бутово:
Москва
8 (495) 714-9481
714-9472
E-mail: butovo@sfe.ru
registratura@sfe.ru

 Skype в Бутово: sferaeye



ФЛЮОРЕСЦЕНТНАЯ АНГИОГРАФИЯ (ФАГ)


Метод флюоресцентной ангиографии

С 1961 г. после работ Novotny и Alvis (1961), показавших возможность серийного фотографирования контрастированных флюоресцеином сосудов глазного дна, метод исследования, получивший название флюоресцентной ангиографии глазного дна (ФАГД), приобрёл особое значение в вопросах диагностики и патогенеза различных поражений сетчатки и хориоидеи. ФАГД преодолела ранее недосягаемый барьер и позволила изучать микроциркуляцию глаза in vivo. Флюоресцеин, введённый внутривенно, контрастирует сосуды переднего отдела глаза, хориоидеи и сетчатки, что можно зарегистрировать фотографически. Флюоресценция сосудов на позитивных фотографиях определяется в виде белых полос на фоне глазного дна, на негативных снимках соотношения обратные.

Для флюоресцентного исследования применяют различные модели фотографических камер: "Ретинофот-211", фундус-камеры фирмы "Орtоn" РР-4 и РК-50 (Германия), японские камеры фирм "Саnon" и "Торсоn", полуавтоматическую ручную фундус-камеру "Коwа КС-2" (Япония). Фотощелевые лампы SL-ЗО и SL-75 снабжены аппаратурой для флюоресцентной ангиографии переднего отрезка глаза. В отечественной практике наиболее популярным прибором является автоматическая фундус-камера фирмы "Орtоn". Этот прибор обладает весьма коротким циклом (перезарядка конденсатора вспышки между экспозициями) и вспышкой большой интенсивности, что позволяет использовать плёнку средней чувствительности. В этой камере применена специальная система автоматической подачи плёнки, приводимая в действие двигателем с встроенным в него электромагнитом. Фотографирование производится нажатием на педаль, так что исследователь всё своё внимание может сосредоточить на объекте исследования. Камера готова к повторной съёмке через 0,5 с, что обеспечивает достаточно высокую скорость серийного фотографирования. Синхронно со съёмкой осуществляется отсчёт временных интервалов, они проецируются на плёнку в ходе ангиографии.

При флюоресцентной ангиографии любой камерой удовлетворительные результаты получаются лишь тогда, когда оптимально сбалансированы светоизлучение вспышки, проницаемость возбуждающего фильтра, спектр активации и флюоресценции красителя, отражательная способность сетчатки, спектр пропускания барьерного фильтра, светочувствитеьность плёнки.

Флюоресцеин - слабая двухосновная кислота из группы ксантенов, используется в виде натриевой соли, хорошо растворимой в воде. Обладает очень высокой эмиссионной способностью, 95% поглощённого синего света (максимум абсорбции 480-500 нм) трансформируется в свет флюоресценции (максимум эмиссионной кривой соответствует 525-530 нм). При введении в кровь 80-85% флюоресцеина связывается с альбуминами плазмы. Однако эти связи слабые и лабильные, значительно зависят от температуры и рН крови. Благодаря небольшим размерам молекулы и низкой молекулярной массе флюоресцеин легко проникает через большинство биологических мембран путём диффузии. Окрашивание кожи и слизистых оболочек достигает максимума через 10 мин после введения, освобождение тканей от флюоресцеина происходит в течение 24-48 ч.

Распределение флюоресцеина в тканях глаза изучал ряд исследователей (Ashton, Machemer, 1965; Cunha-Vaz, 1966) с использованием ангиографических и гистологических методов. Выявлено, что структуры, образующие гематоофтальмический барьер, в норме не пропускают флюоресцеин. К ним относятся сосуды сетчатки, имеющие плотный слой эндотелиальных клеток, связанных между собой особо прочными межклеточными соединениями и слой пигментного эпителия, где практически отсутствуют интерцеллюлярные пространства. В то же время флюоресцеин свободно проникает через фенестрированную стенку хориокапилляров и накапливается в экстравазальных пространствах хориоидеи, окрашивает мембрану Бруха (базальная пластинка сосудистой оболочки глаза) и склеру. Слой пигментного эпителия задерживает переднюю диффузию флюоресцеина из хориокапиллярного слоя. Функционирующие в норме барьеры для проникновения флюоресцеина в сетчатку разрушаются при патологических состояниях, что имеет принципиальное значение для интерпретации флюоресцентных ангиограмм (табл. 1-1).

Таблица 1-1 Проницаемость структур глаза для флюоресцеина

Структура   Проницаемость   Локализация барьера  
Артериолы и капилляры сетчатки   Нет   Эндотелиальные клетки и соединяющие их комп-лексы  
Большие хориоидальные сосуды   Нет   Эндотелиальные клетки  
Хориокапилляры   Да      
Мембрана Бруха   Да      
Пигментный эпителий   Нет   Клетки пигментного эпи-телия и соединяющие их комплексы  
Сосуды радужной оболочки   Нет      
Цилиарный эпителий   Да      

МЕТОДИКА ИССЛЕДОВАНИЯ

Для получения хороших ангиограмм существенное значение имеют использование современной фундус-камеры с высокой скоростью фотографирования, стандартизованная обработка плёнки, контакт с пациентом, прозрачность сред глаза, концентрация, количество и способ введения флюоресцеина. Перед ангиографией необходимо подготовить прибор к работе: зарядить плёнкой, установить счётчик кадров, выполнить функциональную проверку готовности нажатием педали переключателя или пусковой кнопки. Целесообразно объяснить пациенту смысл исследования и порядок его проведения. Флюоресцеин, обычно 5 мл 10% раствора, вводят в локтевую вену, максимальная концентрация красителя в сосудах глазного дна должна достигаться как можно быстрее. До введения флюоресцеина делают фотографию без фильтра, затем в красном и зелёном свете, в синем свете производится контрольный снимок, т.е. начинается исследование: После этого быстро вводят флюоресцеин, и через 5-7 с начинается серийная фотосъёмка (около 20 кадров). Отдельные снимки делают с увеличением интервала. При флюоресцентном исследовании возбуждающий и барьерный светофильтры подбирают таким образом, чтобы они полностью поглощали все лучи, исходящие от источника возбуждения (рис. 1-3).

Рис. 1-3. Спектр пропускания фильтров.

Рис. 1-3. Спектр пропускания фильтров.
Сплошная линия - кривая возбуждения синего фильтра (йли эмиссия), пунктирная - кривая барьерного жёлтого фильтра, заштрихованная часть - псевдофлюоресценция.

Если это условие выполнено, то на снимке получается изображение, "созданное" только флюоресцеином. Для получения качественного контрастного изображения применяют плёнку отечественного производства РФ-3 чувствительностью 1000-1200 обратных рентген, обладающую повышенной чувствительностью к жёлто-зелёной части спектра.

Большинство исследователей, изучавших влияние флюоресцеина на организм, отмечают отсутствие у него токсичности, но не исключены аллергические реакции и аномальная чувствительность к препарату (Rosen, 1969; Wessing, 1969). По данным МНИИ глазных болезней им. Гельмгольца, при проведении 1500 исследований аллергическая сыпь отмечена у 4 больных, коллаптоидное состояние - у 5, пирогенная реакция - у 2 и рвота - у 7 обследуемых. В 5-10% случаев бывает кратковременная тошнота. Все явления быстро исчезли, и ни одно не привело к серьёзным последствиям, но в литературе описаны случаи инфаркта миокарда, отёка лёгких, отёка гортани, гипертонического криза, что заставляет принимать меры предосторожности. Противопоказано проведение ФАГД лицам с аллергическим шоком в анамнезе, а также страдающим бронхиальной астмой, тромбофлебитом. В кабинете ангиографии должны быть средства неотложной помощи. Целесообразно провести внутрикожную пробу с флюоресцеином по типу реакции Манту перед исследованием.

Интерпретация флюоресцентных ангиограмм может быть достоверной только при глубоком знании особенностей клиники разнообразных поражений глазного дна и применении к ним данных ФАГД.

Из количественных методик оценки ФАГД следует отметить углубление метода калиброметрии. Контрастированный ретинальный сосуд имеет чёткие границы, вследствие чего точность измерения его диаметра повышатся. В МНИИ глазных болезней им. Гельмгольца Т.И. Балишанская и Т.И. Форофонова предложили собственную модификацию флюоресцентной калиброметрии, при которой точность расчёта калибра сосудов сетчатки значительно выше, чем при обычных исследованиях. При флюоресцентной калиброметрии диаметр сосуда увеличивается на 10-15% в связи с тем, что флюоресцеин окрашивает слой плазмы, расположенный между центральным слоем крови и стенкой сосуда.

В интерпретации ФАГД в норме значительное место занимает определение фаз прохождения флюоресцеина по сосудам глазного дна. Л.А. Кацнельсон, Т.И. Форофонова (1990) предложили выделять раннюю хориоидальную фазу (первое появление флюоресцеина в хориоидее или цилиоретинальной артерии), время хориоидальной перфузии (между ранней хориоидальной фазой и пиком хориоидальной флюоресценции), раннюю ретиноартериальную фазу, время ретиноартериальной перфузии (от ранней артериальной фазы до полного контрастирования артериальной системы сетчатки), раннюю ретановенозную фазу (пристеночное контрастирование вен), позднюю ретиновенозную фазу, время ретиновенозной перфузии (от ранней венозной фазы до полного контрастирования венозной сети).

У здоровых людей в возрасте от 16 до 60 лет время ранней хориоидальной фазы составляет 8,9+0,34 с, время хориоидальной перфузии - 6,1+0,65 с, ранняя артериальная фаза - 10-12 с, время ретиноартериальной перфузии - 9,7+0,45 с, ранняя ретиновенозная фаза - 11,2+0,45 с, время ретиновенозной перфузии - 5,7+0,13 с (рис. 1-4, 1-5, 1-6, 1-7, 1-8, 1-9). Точный расчёт времени прохождения флюоресцеина затруднителен, так как время "рука-сетчатка" зависит от скорости введения флюоресцеина, скорости фотографирования, особенностей циркуляции крови.

Во всех случаях следует отграничивать хориоидальную фазу от следующей за ней ранней артериальной. Смещение их по времени свидетельствует о задержке хориоидальной циркуляции, что может иметь диагностическое значение.

Качественная интерпретация ангиограмм основывается на анализе уменьшения и увеличения флюоресценции (гипо- и гиперфлюоресценция). Гипофлюоресценция может быть обусловлена блокированием флюоресценции каким-либо веществом или тканью, которые непрозрачны для жёлто-зелёных лучей (геморрагии, кисты сетчатки, пигмент и др.) (рис. 1-10, 1-11, 1-12) или недостаточностью кровоснабжения (окклюзия сосудов, аваскулярные ишемические зоны, атрофия диска зрительного нерва) (рис. 1-13, 1-14). Гиперфлюоресценция вызывается дефектами пигментного эпителия, который не экранирует хориоидальную флюоресценцию, экстравазальным выходом флюоресцеина через патологичски изменённую стенку сосуда или накоплением флюоресцеина в патологических очагах (рис. 1-15, 1-16, 1-17).

Гиперфлюоресценцию необходимо дифференцировать с ауто- и псевдофлюоресценцией. Аутофлюоресценция обусловлена присутствием естественных флюорохромов, когда структуры глаза флюоресцируют без окраски флюоресцеином (например, друзы диска зрительного нерва) (рис. 1-18). Псевдофлюоресценция вызывается способностью некоторых тканей (склера, миелиновые волокна) настолько интенсивно отражать свет, что это может имитировать флюоресценцию. Очаги ауто- и псевдофлюоресценции видны на контрольных снимках ещё до введения флюоресцеина, в связи с чем их часто объединяют под названием "доинъекционная флюоресценция".

Исследование микроциркуляции диска зрительного нерва с помощью ФАГД помогает дифференциальной диагностике при его отёке, ретробульбарных невритах, псевдозастое, друзах, васкулитах, новообразованиях и другой патологии. При глаукоме ишемия диска зрительного нерва выявляется до видимых клинически признаков его поражения, но визуальная оценка нарушения флюоресценции диска трудна и недостоверна. В связи с этим Т.И. Форофонова предложила модификацию метода денситометрии флюоресцентных ангиограмм, названную денситометрическим сканированием. Возрастающая интенсивность микроциркуляции диска выражается в виде кривой. ФАГД показала также, что офтальмоскопически определяемые изменения цвета диска (покраснение или побледнение) далеко не всегда связаны с его патологией.

Приведём краткие характеристики ангиографической картины при некоторых заболеваниях сетчатки и зрительного нерва (Л.А. Кацнельсон, 1981). При нарушении связи мембраны Бруха и пигментного эпителия сетчатки происходит скопление серозного экссудата с локальной отслойкой пигментного эпителия. Отслоенный пигментный эпителий имеет куполообразный вид, натягивается и истончается, на флюоресцентных ангиограммах отслойка пигментного эпителия проявляется в виде круглого очага гиперфлюоресценции с чёткими границами, так как в неповреждённых участках пигментный эпителий плотно связан с мембраной Бруха. При длительно существующих отслойках пигментного эпителия нарушаются процессы его метаболизма и образуется одна или несколько точек, через которые серозная жидкость поступает в субретинальное пространство, вызывая серозную отслойку нейроэпителия. Связь между пигментным и нейроэпителием значительно слабее, поэтому отслойка нейроэпителия имеет нечёткие границы и по площади может значительно превышать область отслойки пигментного эпителия.

При центральной серозной хориопатии выявление на ангиограмме точки фильтрации значительно повышает вероятность успешной лазеркоагуляции.

Окончатый дефект пигментного эпителия возникает при отсутствии пигмента, экранирующего хориоидальную флюоресценцию. Основные причины - атрофия пигментного эпителия и врождённое уменьшение пигмента. Гиперфлюоресценция при дефекте пигментного эпителия зависит от состояния как пигментного эпителия, так и хориокапилляров. Характерные изменения на ангиограмме: гиперфлюоресценция появляется в ранней фазе, соответствующей контрастированию хориоидеи; флюоресценция усиливается параллельно увеличению концентрации флюоресцеина в хориоидее; не определяется увеличения зоны флюоресценции или изменения её формы в поздних фазах ангиографии; флюоресценция уменьшается в фазе выхода флюоресцеина.

Окончатые дефекты пигментного эпителия наблюдаются при дистрофиях сетчатки и макулярных разрывах, друзах, ангиоидных полосах, хронических отслойках пигментного эпителия и нейроэпителия и др.

Друзы - скопления метаболитов между пигментным эпителием и мембраной Бруха. Они вызывают микроотслойки пигментного эпителия, из которых со временем развиваются окончатые дефекты пигментного эпителия. Большие друзы могут блокировать флюоресценцию в ранней фазе ангиографии, но в артериовенозной фазе гиперфлюоресценция проявляется. Обычно при ФАГД определяется больше друз, чем при офтальмоскопии.

Окончатый дефект пигментного эпителия на ангиограмме даёт полный разрыв сетчатки в макулярной области, а при ламеллярных истончениях сохраняются наружные слои сетчатки и не происходит депигментации и атрофии пигментного эпителия. Отмечаемое при макулярных отверстиях валикообразное утолщение сетчатки по краю разрыва является своеобразной отслойкой пигментного эпителия, дающей слабую флюоресценцию в артерио-венозной фазе.

Кистовидный отёк макулы выявляется на ангиограмме выходом флюоресцеина из перифовеальных ретинальных капилляров, окружающих бессосудистую зону. Флюоресценция постепенно распространяется от центра к периферии отёка, заполняя кистозные полости, что хорошо определяется в поздней фазе ангиографии в виде своеобразной розетки.

При центральной дисциформной хориоретинальной дистрофии ангиографическая картина зависит от стадии и течения процесса. Отслойка пигментного эпителия является одним из ранних симптомов. Позже происходит прорастание хориоидальных сосудов в субретинальное пространство с формированием субретинальной неоваскулярной мембраны. В хориоидальной фазе ангиографии мембрана контрастируется в виде колеса со спицами. В поздних фазах детали неоваскулярной мембраны утрачиваются, так как вся её зона интенсивно флюоресцирует. Стенка новообразованного сосуда не становится барьером для флюоресцеина, свободно пропуская его. На стадии рубцевания новообразованные сосуды облитерируются и замещаются фиброзной тканью. Выявляются дефекты пигментного эпителия и участки гипофлюоресценции в результате пигментации и геморрагий.

При наследственных поражениях макулярной области (болезнь Штаргардта) на ангиограмме выявляются единичные точечные дефекты пигментного эпителия, что при прогрессировании атрофии пигментного эпителия приводит к картине ареолярной центральной атрофии хориоидеи.

Своеобразную ангиографическую картину имеет секторальная форма передней ишемической нейропатии: неповреждённая часть зрительного нерва даёт нормальную флюоресценцию, а поражённый сектор контрастируется в поздней фазе ангиографии или не контрастируется совсем. Изучение хориоидальной циркуляции показало дефект заполнения в секторе, соответствующем локализации процесса.

Многообразные флюоресцеинангиографические проявления сосудистых поражений глазного дна (диабетическая ретинопатия, тромбозы центральной вены сетчатки и её ветвей и др.) требуют отдельного рассмотрения. Укажем лишь, что выявление неперфузируемых зон сетчатки (фокальная капиллярная окклюзия) в болыиинстве случаев возможно только при ФАГД, поскольку именно эти участки инициируют развитие новообразованных сосудов, а те в свою очередь приводят к необратимым тяжёлым осложнениям вплоть до слепоты и гибели глаза. Значение ФАГД в этих случаях трудно переоценить. Своевременная лазерная коагуляция в большинстве случаев позволяет предотвратить тяжёлые последствия.

Наряду с ФАГД можно проводить флюоресцентную ангиографию переднего отрезка глаза: радужной оболочки, перилимбальной сети и сосудов конъюнктивы. Так можно получить дополнительную информацию о васкулярных изменениях при сосудистых заболеваниях глаза (рис. 1-19, 1-19а, 1-20).

Развитие метода ФАГД связано со стремлением к его техническому усовершенствованию. Использование стереосепаратора позволяет получить стереоангиограмму, по которой можно оценить выстояние патологического очага.

В последние годы бурно развиваются видеоангиографические исследования и системы цифровой обработки изображений. Задействовано новое поколение офтальмологических приборов: фундус-камера РР-450 с базовой системой ВА5-420 фирмы "Цейсс" (Германия), камера IMAGE-net-640 фирмы "Топкон" (Япония), система "САРИ тм" ТОО фирмы "ЭКОМ" (Россия). Непрерывность регистрации прохождения красителя на мониторе и возможность последующей компьютерной обработки видеозаписи существенно увеличивают объём получаемой информации.

Весьма перспективна количественная оценка проницаемости гематоофтальмического барьера с помощью флюоресцеина как индикатора (флюорофотометрия).

Для исследования хориоидальной циркуляции целесообразно применение в качестве красителя индоцианина зелёного. Он возбуждается и излучает в инфракрасном диапазоне, при этом ликвидируется экранирующее действие пигментного эпителия.

Интересные данные получены при флюоресцентной ангиографии переднего отрезка глаза, в частности перилимбальной зоны, при иридоангиографии.

Таким образом, флюоресцентная ангиография позволила перейти от статического наблюдения клинической картины заболевания к динамическому анализу особенностей микроциркуляторных нарушений, оказав революционизирующее влияние на изучение патогенеза заболеваний глазного дна, их диагностику и лечение.

ЗАДАЧИ ФАГД

  1. Дифференциальная диагностика и уточнение диагноза.
  2. Определение тактики лечения больного и показаний к лазерной коагуляции (ишемические зоны, неоваскуляризация, активные точки фильтрации, субретинальные неоваскулярные мембраны, кистовидные отёки, центральные разрывы).
  3. Точная локализация процесса и определение его распространённости.
  4. Контроль за течением заболевания и эффективностью лечения.

Хориоидальная фаза ФАГД с цилиоретинальной артерией Хориоидальная фаза ФАГД с цилиоретинальной артерией
Артериальная фаза ФАГД Артериальная фаза ФАГД
Артериовенозная фаза ФАГД Артериовенозная фаза ФАГД
Венозная фаза ФАГД Венозная фаза ФАГД
Поздняя фаза (рециркуляция) ФАГД Поздняя фаза (рециркуляция) ФАГД
ФАГД. Артериовенозная фаза. Парафовеальная сосудистая сеть в норме ФАГД. Артериовенозная фаза. Парафовеальная сосудистая сеть в норме
ФАГД. Поздняя фаза. Гиперфлюоресценция в зоне преретинальной геморрагии ФАГД. Поздняя фаза. Гиперфлюоресценция в зоне преретинальной геморрагии
ФАГД. Поздняя фаза. Гипофлюоресценция пигментного невуса ФАГД. Поздняя фаза. Гипофлюоресценция пигментного невуса
ФАГД. Поздняя фаза. Гипофлюоресценция в области кисты сетчатки в верхней половине глазного дна. ФАГД. Поздняя фаза. Гипофлюоресценция в области кисты сетчатки в верхней половине глазного дна.
ФАГД. Поздняя фаза. Гипофлюоресценция ишемических зон сетчатки ФАГД. Поздняя фаза. Гипофлюоресценция ишемических зон сетчатки
ФАГД. Артериальная фаза. Гипофлюоресценция диска зрительного нерва при его атрофии ФАГД. Артериальная фаза. Гипофлюоресценция диска зрительного нерва при его атрофии
ФАГД. Поздняя фаза. Гиперфлюоресценция, обусловленная дефектами пигментного эпителия. ФАГД. Поздняя фаза. Гиперфлюоресценция, обусловленная дефектами пигментного эпителия.
ФАГД. Поздняя фаза. Гиперфлюоресценция, обусловленная повышенной проницаемосью стенок ретинальных сосудов. ФАГД. Поздняя фаза. Гиперфлюоресценция, обусловленная повышенной проницаемосью стенок ретинальных сосудов.
ФАГД. Поздняя фаза. Гиперфлюоресценция в области неоваскуляризации сетчатки ФАГД. Поздняя фаза. Гиперфлюоресценция в области неоваскуляризации сетчатки
Аутофлюоресценция поверхностных друз диска зрительного нерва. Аутофлюоресценция поверхностных друз диска зрительного нерва.
ФАГД перилимбальной конъюнктивы больного гипертонической болезнью. ФАГД перилимбальной конъюнктивы больного гипертонической болезнью.
Флюоресцентная ангиография перилимбальной конъюнктивы при гипертонической болезни. Флюоресцентная ангиография перилимбальной конъюнктивы при гипертонической болезни. Видны окклюзированные сосуды конъюнктивы, замедление контрастирования верхней половины лимбальных сосудов и разорванность лимбальных аркад.
Флюоресцентная иридоангиограмма Флюоресцентная иридоангиограмма
К содержанию атласа патологии глазного дна
ГЛАВЫ: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



О клинике | Услуги | Цены | Вопрос-Ответ | Полезная информация! | Контакты

Клиника “СФЕРА” (Лиц. № ЛО-77-01-007819) Адрес: 117628 г.Москва ул.Старокачаловская д.10
Телефоны регистратуры: 8(495) 139-09-81, 8(499) 643-47-95, 8(495) 714-94-72


/v_atlas_dna_gl1fag.php